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Table 3. Tabulated values of variables and correlating constants 

Variables 
or Test run no. 

constants I 2 3 4 5 6 7 8 9 10 Average Error 

c, 2.72 2.72 2.63 2.18 2.17 2.23 2.08 2.14 1.90 1.90 2.27 i20% 
c* -200.6 -189.2 -179.8 -233.2 -233.8 -222.0 -257.0 -249.2 -212.2 -273.0 -231.0 i20% 
91 8.9 8.6 9.9 8.3 8.2 7.8 6.9 8.3 6.8 6.9 8.1 k22% 
92 -191.0 -190.9 -193.3 -218.5 -218.9 -256.3 -286.3 -292.7 -253.1 -252.6 -253.4 +17% 

8.6 8.4 9.8 9.1 8.5 8.1 7.3 8.1 7.1 7.3 8.2 +13% 
2217.9 2196.3 1989.9 1876.4 1936.2 2074.5 2167.3 1985.7 1983.1 1792.4 2021.4 +ll% 

that the present correlation for both heat transfer and mass 
flow rates is consistent with each other as far as the cor- 
relating constants illustrating the thermal characteristics of 
the present heat-pipe heat exchangers are concerned. The 
other is that the heat transfer rate seems uniquely determined 
once &, and c, are found. It appears that the methodology 
under investigation does not generate any more limitations 
on the heat transfer rate of a heat-pipe heat exchanger. 

The total mass flux as well as the average latent heat are 
also tabulated in Table 3 for ten cases with the maximum 
error about _+20%. The error in the variable and the cor- 
relating constant was defined as the percentage deviation 
between the average value for total test runs and the value 
of each individual case. It is, therefore, concluded that the 
desired correlation for the heat transfer rate of a heat-pipe 
heat exchanger under the present configuration can be ex- 
pressed in the form of 

where c, = 2.2lf20%, c2 = -231.0+20%. It seems that c, 
and c,are independent of the specifications of the individual 
heat pope. Further studies may include the expe~mental veri- 
fication of the present results. 

CONCLUSIONS 

A simplified but relatively generalized method is developed 
and used to predict the thermal performance of the heat-pipe 

heat exchanger for any staggered type alignment. The model 
has been tested based on the results from previous inves- 
tigators. The resultant thermal perfo~ance is correlated in 
the form 

$ = 2.27([ -e-23’nv) 
” 

which may provide thermal design data for a heat-pipe heat 
exchanger configuration applicable to waste heat recovery 
systems. 
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INTRODUCTION 

A POWER generating device for space applications requires a 
radiator for waste heat dissipation. As the power require- 
ments increase (e.g. for a space station), a conventional radi- 
ator, such as a tube and fin design, could become so large 
and heavy that it would be impractica! to launch and erect 
in space. A radiator has been proposed in the literature that 
may be much lighter and easier to deploy; it would utilize 
streams of hot liquid drops passing directly through space 
so that energy would be lost by transient radiative cooling 

[l]. Recent research and analysis on this type of radiator are 
given in refs. [2-4]. To better utilize the energy transport 
ability of the drops, it may be useful to have the drops 
solidify, thereby taking advantage of their latent heat of 
fusion. This could also reduce evaporation losses from the 
drops. The liquid drop radiator would consist of thousands 
of individual directed streams that form a layer of drops 
(Fig. 1). If the initial temperature of this array of drops is 
near their freezing point, the subsequent radiative cooling 
will initiate solidification. During the phase change that fol- 
lows, the two-phase layer will remain at uniform tempera- 
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a absorption coefhcient of drop-filled layer 
: 

coordinate across width of layer 
D thickness of drop-filled layer dimensiontess coordinate, (~~~/~~~)(z/~) 
E,, E, exponential integral functions, z coordinate along length of layer in flow 

E,,(x) = 
s 

direction 

ZL”- ’ exp (-x/p) dp 20 location where P first reaches zero ; 
0 z, = Z(z,). 

I source function in absorbing-scattering layer ; 
I”= d/(rT,4 Greek symbols 

Yr radiative heat how per unit area and time E emittanoe of layer 

T, temperature of surrounding environment, K optical coordinate, (a+ ffJx; K~ optical 
T, = 0 thickness, (a + u,)D 

Tr solidification temperature PC* dummy variable of integration 
u velocity distribution across drop-filled layer 1 latent heat per unit mass of layer containing 
a integrated mean value of u drops 
P local liquid fraction of drops in layer, VI/V, P density of layer containing drops 

Vd volume of drops per unit volume of layer 0s scattering coefficient of drop-filled layer 

VI volume of liquid per unit volume of layer n albedo for scattering, a&z+ us). 

ture. This will maintain a higher layer emittance than for a 
layer where the outer portion has become cool as a result of 
sensible heat loss. 

In this technical note, a rather simple solution will be 
obtained for the transient cooling of a solidifying layer filled 
with drops that can emit and scatter radiation. The velocity 
distribution across the layer can be nonuniform, as shown 
in Fig. 1. Although the layer remains at uniform temperature 
during solidification, the outer portions lose heat most 
rapidly. This produces a variation along the length of the 
layer in the distribution of liquid concentration across the 
layer. The analytical solution applies until any local region 
within the layer becomes completely solidified. The results 
provide the amount of energy that can be dissipated by the 
two-phase system while it remains at uniform temperature. 
Another aspect of the solution considers the particular vel- 
ocity distribution that will maintain a uniform liquid fraction 
across the entire layer at all locations along the layer length. 
With this velocity distribution, all of the latent energy in the 
layer can be radiated away while the layer remains at uniform 
temperature with a constant emittance. 

The radiative cooling of the two-phase layer provides an 
interesting type of freezing situation, since it does not involve 
a moving boundary dividing solid and liquid regions. Energy 
is being dissipated by radiation from throughout the entire 
partially solidified layer; hence solidification occurs sim- 
ultaneously throughout the entire layer. 

ANALYSIS 

The drops in the region in Fig. 1 originate as liquid just 
slightly above the melting point. As long as the layer does 
not contain any local region that has become completely 

Vf (X.2) 

“iI 

Te = 0 

FIG. 1. Geometry of radiating-scattering layer filled with hot 
solidifying drops and having a non-uniform velocity, 

solidified it will remain at T, and the loss of latent energy by 
radiative cooling is governed by the energy equation 

PMX) av, 34, 
-----=-ax vd a2 (1) 

The derivative in radiative flux for a gray medium with 
isotropic scattering is given in terms of the source function, 
Z> by I51 

XE,(IK-K*i)dK*--‘h~(K,Z). (2) 

For emission and scattering in a layer at uniform temperature 
Tr, the source function is [S] 

0 % 
f(K)=(I-a)$+- 

f 2 I? 
Z(h.*)E,(]k’-rc*I)dK*. (3) 

Note that, since ?‘r is constant, Z(K) is independent of z. By 
eliminating the integral between equations (2) and (3), the 
radiative flux derivative is found as 

Then the energy equation, equation (If, becomes 

p~a(v~~v~) 1 -n nZ(ic)--UT,4 
~ = 4(a+u,). 

a2 a(K) ’ 

(4) 

(5) 

Since Z(K) and U(K) are independent of z, equation (5) can 
be integrated subject to the condition VI/V, = 1 at z = 0 to 
obtain the solution for V,/ V, in dimensionless form 

P(ti,z) = l-4KD----- (6) 

Relations n&en tlelocity is uniform acmw layer 
In this instance equation (6) simpli~es since u(K)/C = 1. 

Then at the outer boundary of the layer, K = 0, the liquid 
fraction is 

P(o,z) = 1-4K&+-f(o)]Z. 

Let 2, be the axial location where solidification first becomes 
complete at any local position within thelayer. For a uniform 
velocity this would be at the outer boundary of the layer. 
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Then P(O, 2,) = 0 and equation (7) yields 

10 1 
ZO=&&?K@%) 

O<IR<l. (8a) 

From equation (3) 

so that equation (8a) can be written as 

1 1 
z. = ~ 

4K,(l -n) ID I 

s 
I(K*)E, (K*)dK* 

0 

When scattering is absent, a = 0 and r= I, so that 2, 
becomes 

n = 0. 

In the region 0 < Z < Z,, the entire layer thickness is two- 
phase and is at temperature Tr. The emittance of a constant 
temperature layer depends only on its optical thickness and 
scattering albedo; hence the emittance remains constant 
between Z = 0 and 2,. Then the fraction of the original 
latent energy that is emitted in the constant temperature 
region from Z = 0 to Z, is 

2soT,42, 
- = 2&(Ka, sz)Zo. 

Dlipl (9) 

The E&, Q) values are given in Table 1 obtained from ref. 
[4]. The f(O) values needed for evaluation of Z, in equation 
(8a) were obtained from a numerical solution of the integral 
equation, equation (3). The numerical solution is described 
in ref. [4] and will not be repeated here. 

If the liquid fraction P(K, z) can be kept uniform across 
the layer, the entire cross-section will become solid at .z = zP 
Thus the entire layer will remain two-phase and at uniform 
temperature while all of the latent energy is lost. To have V 
be independent of K, equation (6) shows that U(K) must be 
proportional to 1 -T(K). Then 

4x1 1 -f(K) 
-= 

ii 
, o<a<r. (W 

Another form for equation (tOa) is obtained by substituting 
1 -T(K) from equation (3) to yield 

s LQ _ 
2- 

u(K) 
I(?c*)E,(IK-fc*j)dK* 

0 
-=:KD- 

ii LX? L-0 _ 

S[ s 
2- I(rc*)E,(IK-K*])dK* dK 

0 0 I. 
Table 1. Emittance values for drop-~lled layer at uniform 

temperature, E(K~, Q) 

Optical Scattering albedo, n 
thickness, ---- 

KD 0 0.3 0.6 0.8 0.9 0.95 

0.2 
0.5 
1.0 
2 
3 
4 
5 

10 

0.296 0.225 0.140 0.0748 0.0386 0.0197 
0.557 0.449 0.303 0.172 0.0926 0.048i 
0.781 0.667 0.490 0.304 0.173 0.0926 
0.940 0.846 0.681 0.475 0.297 0.170 
0.982 0.900 0.757 0.566 0.382 0.233 
0.994 0.918 0.786 0.612 0.436 0.281 
0.998 0.924 0.798 0.637 0.470 0.317 
1 .ooo 0.933 0.808 0.659 0.518 0.389 

For the case of no scattering, r= 1, and this form is inte- 
grated to give 

U(K) EZ(~)fE.,(~D-~) -= 
c 

Kg----L-, $-) = 0. 
1 -%(%I) (lob) 

By substituting equation (lOa) into equation (6). the vari- 
ation of liquid fraction with length becomes 

P(Z)= I-4!${l;[l-&)]drc}Z. (11) 

This is simplified by noting that from equation (4) the inte- 
gral of &&/aK from K = 0 to tiD yields 

I 
“(1-&)]dn-. (12) 
0 

From symmetry qr(KD) = -q,(O) = mTf4. Then by use of 
equation (12), equation (11) gives the variation of v with 
length as 

P(Z) = I-282. (13) 

Complete solidification, P(Z) = 0, is reached when 

z* = &* (14) 

The values of E(K~, Q) are given in Table 1. 

RESULTS AND DISCUSStON 

The drop-filled layer starts in all liquid form. and for a 
layer with uniform velocity it remains two-phase across its 
entire width up to axial location zO, as given in dimensionless 
form by equations (8a) and (8b). The layer emittance remains 
high at the value for a constant temperature layer. The values 
of f(O) for equation (8a) were obtained for various K~ and 
Q from the numerical solution of equation (3) and the result- 
ing z0 for a uniform velocity layer are given in Fig. 2. The 
ordinate is the quantity Z,,K~ calculated from equation (8), 
and the curves presented in this way are rather insensitive to 
the optical thickness so that values can be readily interpo- 
lated for other kg values. The t0 increases substantially as 
R is increased. This is the result of a decreased layer emit- 
tame, and also the fact that increased scattering makes the 
energy loss more uniform from within the layer. This allows 

. 
0 ‘2 .4 .6 .8 1.0 

SCATTERING AL*EDO* 0 

FIG. 2. Length of completely two-phase region for layer 
having a uniform velocity. 
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FIG. 3. Fraction of latent energy radiated away while layer 
with uniform velocity remains completely two-phase. 

more energy to be dissipated before the drops at the outer 
edges of the layer become completely solid. For z > zO, the 
outer regions of the layer become completely solidified and 
then decrease in temperature because of sensible heat loss ; 
this will yield a reduced emittance for the layer. 

The other quantity of interest for a layer with uniform 
velocity is the total amount of energy that can be radiated 
away while the layer remains at uniform temperature, equa- 
tion (9). This is given in Fig. 3 as a function of the layer 
optical thickness and scattering albedo. The largest energy 
fraction radiated away will occur when the local radiative 
loss from within the layer is most uniform. This occurs when 
the layer is optically thin, or when the albedo is large so that 
scattering produces a more uniform distribution of energy 
throughout the layer. This delays the onset of complete local 
solidification in the layer. 

For the layer with non-uniform velocity, the 2, is given 
by the simple relation equation (14). The velocity distribution 
required to achieve this is in equations (lOa) and (lob). 
Equation (lOa) was evaluated using the numerical solution 
in ref. [4] for the integral equation, equation (3) and the 
velocity distributions for rcD = 2 and 5 are in Fig. 4 for 
various values of n. For an optically thick region (large K~), 

the outer portions of the drop-filled layer cool more readily 
than the inner portions that are shielded by the outer regions. 
This tends to produce large nonuniformities in the liquid 
fraction across the layer. Consequently, to maintain a uni- 
form liquid fraction, the required nonuniformity in velocity 
across the layer must be increased as the optical thickness 
increases ; this is evident in Fig. 4. As the scattering albedo 
becomes larger, the increased energy reflection between the 
drops tends to equalize the energy being lost from each local 
dx region within the layer. Hence as R is increased, there is 
a decrease in the size of the velocity nonuniformity required 
to maintain the liquid fraction constant across the radiating 
layer. The combined effects of varying optical thickness and 
scattering albedo result in the trends in Fig. 4. 

2.4 r 
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(a) 

.4 

0 t, I I I I 

(b) 

0 .1 .2 .3 .4 .5 
X =K,KD 

FIG. 4. Velocity distributions as a function of rcD and R that 
will maintain a uniform liquid fraction across the layer : (a) 

optical thickness, K~ = 2 ; (b) optical thickness, K” = 5. 
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